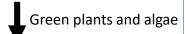
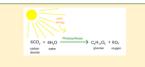
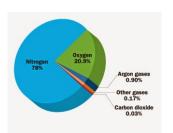

Early Atmosphere evolving


Volcanoes produced Carbon dioxide, nitrogen (and a bit of methane and ammonia)



From condensed water.

Carbon dioxide dissolved in the oceans. Carbonates precipitated (turned into solid bits) to form sediments.



Took in CO₂ and released O₂ in **photosynthesis**.

Sedimentary rocks and fossil fuels were formed:

Decreased the CO₂ levels

Greenhouse Gases and Climate change

Carbon dioxide Methane Water Vapour

Short wavelength doesn't interact with the gases

Longer wavelength emitted does interact with the gases

Human activities increase the levels of CO₂ and CH₄

CO,

- burning fossil fuels
- Deforestation

Methane

- · Cows (and rice paddies)
- landfill

CC2

Effects of climate change:

- Rising sea levels
- Droughts
- Extreme weather events
- Changes in wildlife distribution

Why do some people deny humans cause climate change????

Difficult to model.
Models are simplified.
Media can be biased.
MUST check the evidence is PEER
REVIEWED

Carbon footprint 'Total amount of CO₂ and other greenhouse gases emitted over the full life cycle of a product, service or event'

Solution:

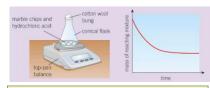
Reduce carbon footprint (emissions of CO₂ and methane)

- Use less fossil fuels
- Carbon capture and storage
- · Eat less meat
- Send less food waste to landfill

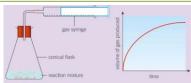
Atmospheric Pollutants

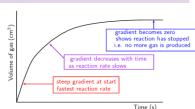
Gases released in combustion of fossil fuels and their effects:

Gases	Released when	Effects caused
Carbon dioxide	All fossil fuels burn	Global warming
Water vapour	All fossil fuels burn	None
Carbon monoxide	Incomplete combustion of fuels (not enough O_2)	Poisonous gas
Solid particulates	Solid fuels burn incompletely	Global dimming Asthma
Sulphur dioxide	Coal burns (sulphur is an impurity in coal)	Acid rain Respiratory problems
Nitrous oxides	Nitrogen in air reacts with oxygen at high temperatures	Acid rain Respiratory problems



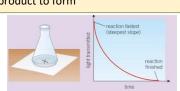
Measuring Rate


To measure the rate of a reaction you can:


- Measure how fast the reactants are used up
- Measure how fast the products are made

e.g. Measure mass lost due to gas formed

e.g. Measure volume of gas made



Rate = volume of gas ÷ time

cm³/s

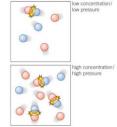

e.g. Measure time for insoluble product to form

Collision theory

sion

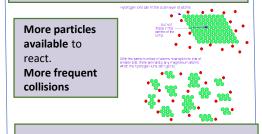
For a reaction to happen reactants must: collide with enough energy (activation energy)

A successful collision is one that leads to a reaction

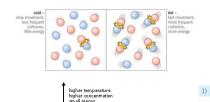

So to increase the rate of a reaction you must either

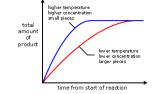
- Increase the frequency of collisions
- Increase the energy of the collisions
- Decrease the energy needed for a collision to be successful

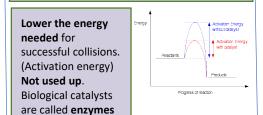
Factors affecting rate


Concentration and Pressure

More particles in the same space. More frequent collisions

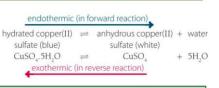

CC2


Surface area


Temperature

Particles move faster.
So they collide more frequently.
Particles collide with more energy.
So more of the collisions are successful.

Catalysts

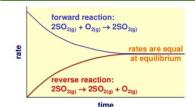


Reversible reactions

Can go in both directions.

$$A + B \rightleftharpoons C + D$$

If a reaction is exothermic in one direction it is endothermic in the other direction.


In a closed system (where nothing can get in or out) an equilibrium is reached where the rate of reaction is the same in both directions.

• Rate of forward reaction = rate of reverse reaction.

eventually the rates of and are the same

 Mount of products and reactants don't change.

