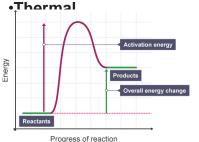


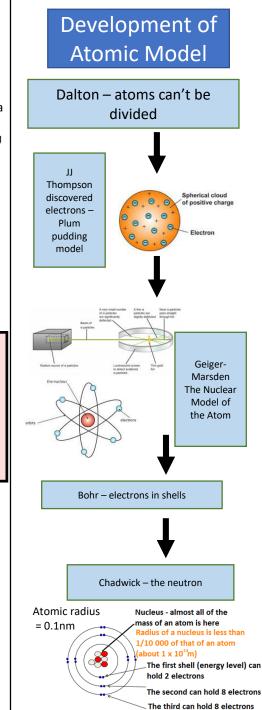
Exothermic reactions –

give out heat energy. Examples of exothermic reactions include:

combustion reactions
many oxidation reactions


most neutralisation

Progress of reaction


Endothermic reactions –

Take in heat energy. Examples of endothermic reactions include:

Relative masses and Mole Atoms are made up of protons, Neutrons and electrons. Protons & Neutrons have a mass of 1 each. **Electrons** are negligible Ar is atomic mass of an element Mr is the combination of all elements Ar in a compound or Molecule The masses of atoms are compared by measuring them relative to atoms of carbon-12. One mole of any substance is its relative formula mass, in grams. molybdenum element name atomic number 42number of protons (Z) atomic symbol atomic mass 95.94 < A (this is an average mass) Work example Helium (He) Ar = 4 Carbon dioxide = CO_2 Carbon (C) = 12 Oxygen (0) = 16 $Mr of CO_2 = 12 + (16 \times 2) = 44$ 1 mole of any substance always contains 6.02 X 10²³ particles. Number of moles = mass A,/ M, For example if you have 22g of carbon, how many moles would you have Moles = mass (22)

M, (44)

Reversible reactions

Can go in both directions.

$$A + B \rightleftharpoons C + D$$

If a reaction is exothermic in one direction it is endothermic in the other direction.

endothermic (in forward reaction)

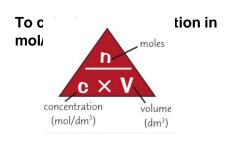
 $\begin{array}{rll} \mbox{hydrated copper(II)} &\rightleftharpoons \mbox{anhydrous copper(II)} + \mbox{water} \\ \mbox{sulfate (blue)} & \mbox{sulfate (white)} \\ \mbox{CuSO}_4, 5H_2O &\rightleftharpoons \mbox{CuSO}_4 &+ 5H_2O \\ \mbox{exothermic (in reverse reaction)} \end{array}$

Dynamic equilibrium – the rate of the forward and reverse reaction remain at a constant rate. This can only be achieved in a closed system.

Le Chatillier – a system at equilibrium will react to oppose any change made upon it.

The equilibrium of a reversible reaction can be affected by:

- Changes in temperature
- Changes in pressure
- Changes in concentration.

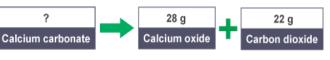

Concentration

A **solution** forms when a **solute dissolves** in a **solvent**. The **concentration** of a solution is a measure of how 'crowded' the solute particles are. The more concentrated the solution, the more particles it contains in a given **volume**

To calculate concentration in $\mathbf{G}_{i}^{(1)}$

Example – 2g of salt are dissolved into 0.5 dm³ of solution. Concentration – 2/ 0.5 = 4g/dm³

Example: 3 moles of a solid are dissolved in 0.1 dm³ of water.


Concentration = 3/ 0.1 = 30 mol/dm³

Note 1 $dm^3 = 1000 cm^3$

The law of conservation of mass.

The law of conservation of mass states that no **atoms** are lost or made in a chemical reaction.

Example: in the example, the mass of calcium carbonate must be

28 + 22 = 50g

If a reaction releases a gas, it might appear that the mass goes down s $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$

In the example, CO_2 is given off and so the mass would appear to reduce <u>unless</u> carried out in a closed system.

The mass may appear to increase where an element reacts with an element in the atmosphere Example: $2Mg + O_2 \rightarrow 2MgO$

Magnesium reacts with oxygen from the atmosphere.

10 cm

Potable water

Water is essential for life. Water that is safe for humans to drink is called **potable water**. Potable water is not pure water because it almost always contains **dissolved** impurities.

For water to be potable, it must have sufficiently low levels of dissolved **salts** and **microbes**. This is because:

- dissolved salts can sometimes be harmful for humans
- microbes can cause illnesses

Most potable water in the UK is produced from naturally occurring fresh water by:

- 1. passing the water through filter beds to remove **insoluble particles**
- 2. sterilising the water to kill microbes

Distillation

Sea water is heated until it boils. The salt remains in the liquid, and the steam is pure water. The steam is cooled and condensed to make potable water.

Reverse osmosis

Water is put under high pressure and passed through a **membrane** which has tiny pores (holes) in it. The pores allow water **molecules** through, but prevent most **ions** and molecules from passing through. Reverse **osmosis** requires expensive membranes and also produces a large volume of waste water, so its **efficiency** is often quite low.