Keywords			Newtons Laws		The terminal velocity of an object depends on
Force Vector	Make objects move or change shape. Measured in Newtons (N) Quantities with both magnitude [size] and direction such as momentum		First law	Resultant force is zero if stationary or travelling at constant speed. Objects will travel in a straight line unless a force acts on it. (HT- resisting that change)	its shape and weight. The shape of the object determines the amount of resistant force which can act on it. For example, an object with a large surface area will have a greater amount of resistance acting on it.
Scalar Speed	Quantities with only magnitude A scalar quantity – How something covers a		Second Law Third	F=ma – acceleration is proportional to force & inversely proportional to mass When objects interact their forces are	Consider a skydiver and his parachute. When the skydiver first jumps from the aeroplane
Velocity	A vector quantity – speed in a given direction	Forces and Vectors	Law	equal and opposite Common Speeds	He will fall until he reaches a terminal velocity of approximately 120mph.
Acceleration	How quickly something speeds up. (change in speed ÷ time taken) [m/s/s]	resultant force with a	/ walking 1	.5 m/s, running 3 m/s, cycling 6 m/s	
Distance	A scalar quantity that measures how much ground an object covers when moved	$f = \sqrt{a^2 + b^2}$	-		
Displacement	A vector quantity that measures how far out of place an object is from A to B	$F_{net} = F_1 + F_2$			
Weight	A force caused by gravity. Measured in Newtons [weight = mass x gravity]				
Mass	The amount of matter an object has. Measured in g or kg	F ₂ Termi			After the skydiver releases his parachute, the shape and area has been changed and so the
Resultant Force Terminal	The overall, single force. This is zero if objects are stationary or at constant speed The maximum speed objects reach when	When great air re	an object begin er than the force esistance or fricti	s moving, the force accelerating the object is much resisting the movement. A resistant force might be ion, for example.	amount of air resistance acting is increased. This causes him to decelerate and his terminal velocity is reduced to about 15mph. This makes it a much safer speed to land on the ground.
Velocity Joule	falling. When weight = resistive forces Force of 1 Newton displaces an object of 1 metre (1 Joule = 1 Newton-metre)	As th also gradu	e velocity of the object increases, the force resisting the movement increases. This causes the acceleration of the object to be reduced ually until the forces become equal and are balanced. This doesn't		CAR PRA
Hookes Law	Extension of an elastic object is directly proportional to the force [F = ke]	cause balar	e the object to s aced forces mean	stop moving. As the object is already in motion, a it will continue to move at a steady speed . This	
Stopping Distance	The amount of time it takes to stop. Thinking distance + braking distance. (in m)	stead term	y speed is the ma inal velocity.	iximum that the object can achieve and is called the	

PF2 Knowledge organiser

Acceleration require practical

To investigate the effect of varying the force on the acceleration of an object.

Method

1.Position an air track on a bench with a bench pulley at one end and two light gates above the track. Cut an interrupt card to a known length (such as 10 cm) and attach it to an air track glider.

2.Connect the glider to a hanging mass by a string the length of the air track passing over the bench pulley. Make sure the air track is level and that the card will pass through both gates before the mass strikes the floor.

- 3.Set the data logging software to calculate acceleration.
- 4.Add 5 × 20 g slotted masses (0.98 N of force) to the end of the string.
- 5.Release the glider, then record the weight and acceleration.
- 6.Repeat steps 4 and 5 two more times, and calculate a mean value for the acceleration.

7.Repeat steps 4 to 6, removing one of the slotted masses each time (giving forces of 0.78 N, 0.59 N, 0.39 N and 0.20 N.

Results

It is important to record results in a suitable table, like the one below, which shows a set of example results:

Force (N)	Run 1 acceleration (m/s) ²	Run 2 acceleration (m/s) ²	Run 3 acceleration (m/s) ²	Mean acceleration (m/s) ²
0.98	0.22	0.27	0.37	0.29
0.78	0.20	0.29	0.21	0.23
0.59	0.26	0.11	0.17	0.18
0.39	0.21	0.10	0.05	0.12
0.20	0.04	0.06	0.11	0.07

Force (N)

Vacuum cleaner blowing out air String Bench pulley Weight

Light gates

Equations					
Energy Transfer	Work (J or N/m) = Force (N) x				
(WOIK)	Distance (III)				
Weight	Weight (N) = mass (kg) x g				
Hookes law	Force (N) = spring constant				
	(N/m) x extension (m)				
Elastic Potential	Elastic potential energy = ½ x				
Energy	spring constant x (extension) ²				
Speed	Speed (m/s) = distance (m) ÷				
	time (s) [v = s ÷ t]				
Newtons 2 nd Law	Resultant Force (N) = mass				
	(kg) x acceleration (m/s ²)				
Acceleration	Acceleration (m/s/s or m/s ²) = change in velocity ÷ time taken				
Uniform	$V^2 - U^2 = 2 a s$ V = u + at				
Acceleration	$V^2 = U^2 + 2 a s$ S = ut + $\frac{1}{2} at^2$				
U = initial velocity V = final velocity t = time a = acceleration s = displacement u, v, a, s = vector quantities t = scalar quantity					

Evaluation

Acceleration is directly proportional to the force exerted on the object.

Contact Forces	Non-Contact Forces	Scalar Quantity	Vector Quantity
Friction	Gravitational Forces	Mass	Force
Air Resistance	Electrostatic Forces	Speed	Acceleration
Tension	Magnetic Forces	Distance	Displacement
Reaction Forces	Nuclear Forces	Time	Velocity

PF2 Knowledge organiser