Y7 Mastery: Unit 8 - Classifying 2D shapes

Rotational Symmetry

Draw around the shape on tracing paper. Do not start counting when the shape is in the original position

The equilateral triangle has a rational symmetry of order 3. This is because
it fits on itself 3 times in one complete rotation.

Keyword/Skill	Definition/Tips
Rotational Symmetry	Looks at how many times an image looks exactly the same in a complete turn.
Order	The number of times an object fits over its own image in one complete turn
Reflective symmetry	The reflected shape will be exactly the same as the original, the same distance from the mirror line and the same size.
Line of symmetry	The line that cuts a shape in half exactly.
Scalene triangle	Triangle where the three sides are different lengths and the angles are all different sizes.
Equilateral triangle	Triangle where all three sides are equal length and all angles are equal.
Isosceles triangle	Triangle with two sides of equal length and two equal angles.
Right-angle triangle	Triangle where one of its angles is a right-angle.
Angle	A measure of turn with the

Angles in a triangle sum to 180

Make sure that you find all the lines of symmetry to answer a question.

- Lines of symmetry can be vertical, horizontal or diagonal
- The line of symmetry is also called the mirror line or the axis of symmetry.
- A circle has infinite lines of symmetry.
- The lines of symmetry on a shape intersect (cross) at a point.
his heptagon has
1 line of symmetry

A rectangle has 2 lines of symmetry.

A square has 4 lines of symmetry.

Properties of Triangles

Scalene	Isosceles	Equilateral	
Has a right angle			Impossible as all angles are 60°
No right angle			

Y7 Mastery: Unit 8 - Classifying 2D shapes

Comparing Quadriaterals

Rectangle
Rectangle
-> 2 pairs of Parallel sides
-> 2 pairs of Parallel sides
angles
angles
-> 2 lines of symmetry
-> 2 lines of symmetry

Parallelogram

$\rightarrow \quad 2$ pairs of equal sides \rightarrow Opposite sides parallel \rightarrow Opposite angles equa

Keyword/Skill	Definition/Tips
Quadrilateral	Any 2-dimensional four sided shape
Diagonal	Created by joining opposite corner with a line (in a quadrilateral)
Vertex	Corner
Parallel	Lines side by side that are always the same distance apart and never meet
Perpendicular	Meet at a right-angle AdjacentNext to Intersect Bisect lines
Opposite usually referring to	
Reflex angle	Cut exactly in half Situated on the other side than 360°
Congruent	Exactly the same size and shape
Pair a set of two	

Diagonals information is in red
Order of rotational symmetry is in blue
Square

Bisect
Perpendicular
Order 4

Rectangle

Bisect
NOT perpendicular Order 2

Parallelogram Bisect NOT perpendicular

 Order 2

Irapezium
DO NOT Bisect
NOT perpendicular
No rotational symmetry

Kite
DO NOT Bisect
Perpendicular
No rotational symmetry

Arrowhead (Delta)
DO NOT intersect
No rotational symmetry

Angles in a Quadrilateral

$a^{\circ}+b^{\circ}+c^{\circ}+d^{\circ}=360$

Tessellation

A shape tessellates if it fits together without any gaps. (Like tiling)

Isosceles Trapezium

Other topic/units this could appear in: Angles in Polygons, Transformations, Solving problems involving angles,

