

Crossover Unit 10 Seguences

Y8 Mastery: Unit 1 – Sequences				Keyword/Skill	Definition/Tips
<u>Continuing</u> Examples: <u>Sequences</u> Find the next two terms in the following sequences:	We can calculate a given term in a sequence by substituting (replacing) the letter n in the nth term formula with the given number.		Variable	A symbol for a number we do not know yet, it is usually a letter.	
a) 1, 3, 5, 7, 9, 11, 13 (adding 2 each time)				Term	Either a single number or a variable , such as 4 or n.
b) 2, 4, 8, 16, 32, 64, 132 (doubling each time)	Examples: Find the 10 th , 50 th and 35 th terms: a) 2n b) 2n – 10			nth term	A rule or formula to work out
c) 50, 45, 40, 35, 30, 25 (subtracting 5 each time)	a) 2n means 2 x n	b) 2n – 10 means	2 x n – 10		any term in a sequence.
d) 1, 1, 2, 3, 5, 8, 13, 21 (adding the two previous terms together) This is called a Fibonacci sequence.	so 10 th ferm = $2 \times 10 = 20$ 50^{th} ferm = $2 \times 50 = 100$ 35^{th} ferm = $2 \times 35 = 70$	so 10 th ferm = 2 x 50^{th} ferm = 2 x 35^{th} ferm = 2 x	$ \begin{array}{c} 10 - 10 = 10 \\ 50 - 10 = 90 \\ 35 - 10 = 60 \end{array} $	Expression	A mathematical statement written using symbols , numbers or letters .
Step 1: Find the common difference 3	, 7, 11, 15,	Common difference = +4	<u>The nth term</u>	Equation	A statement showing that two expressions are equal.
				Formula	Shows the relationship between two or more variables .
Step 2: Write down that times table	, 8, 12, 16,	Write the 4x table	4 n	Substitute	In algebra it means replacing letters with numbers.
	3, 7 , 11, 15,			Finite	Has a set end point.
				Infinite	Continues forever, and ever, and ever, and ever.
Step 3: Find what you need to add/subtract	$\begin{array}{c} 4, \\ 3, \\ 7, \\ 7, \\ \end{array} \begin{array}{c} 12, \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -$	Subtract 1 from	4 n - 1	Constant Difference	The amount increases or decreases by the same amount each time
		ine 4x iddie		Sequence	A list of numbers or objects arranged in a specific order.
		The nth term	is 4 n - 1	<u>other I</u> this cou in:	<u>uld appear</u>
Crossover Unit 49					