Y8 Mastery: Unit 1 - Sequences

A set of numbers in a specific order is called a sequence.

This is an arithmetic sequence because there is a common difference between terms.

Each number in the sequence is called a term.

Picture Sequences

Sometimes sequences are given as pictures

Using Flowcharts Sequences can be generated using a flow chart.

Keyword/Skill	Definition/Tips
Variable	A symbol for a number we do not know yet, it is usually a letter.
Term	Either a single number or a variable, such as 4 or n.
nth term	A rule or formula to work out any term in a sequence.
Expression	A mathematical statement written using symbols, numbers or letters.
Equation	A statement showing that two expressions are equal.
Formula	Shows the relationship between two or more variables.
Substitute	In algebra it means replacing letters with numbers.
Finite	Has a set end point. Infinite Continues forever, and ever, and ever, and ever... Difference The amount increases or decreases by the same amount each time Sequence A list of numbers or objects arranged in a specific order.

Other Topics/Units this could appear
in:

Y8 Mastery: Unit 1 - Sequences

	Continuing
Examples:	Sequences

Examples:
We can calculate a given term in a sequence by substituting (replacing) the letter \mathbf{n} in the \boldsymbol{n} th term formula with the given number.

Find the $10^{\text {th }}, 100^{\text {th }}$.. term

Examples: Find the $10^{\text {th }}, 50^{\text {th }}$ and $35^{\text {th }}$ terms:
$\begin{array}{ll}\text { a) } 2 n & \text { b) } 2 n-10\end{array}$
a) $2 n$ means $2 \times n$
so $10^{\text {th }}$ term $=2 \times 10=20$
$50^{\text {th }}$ term $=2 \times 50=100$
$35^{\text {th }}$ term $=2 \times 35=70$
b) $2 n-10$ means $2 \times n-10$
so $10^{\text {th }}$ term $=2 \times 10-10=10$ $50^{\text {th }}$ term $=2 \times 50-10=90$ $35^{\text {th }}$ term $=2 \times 35-10=60$

The nth term

$4, \quad 8,12,16, \ldots$ $3,7,11,15, \ldots$

Subtract 1 from $\quad 4 n=1$
the $4 x$ table

Keyword/Skill	Definition/Tips
Variable	A symbol for a number we do not know yet, it is usually a letter.
Term	Either a single number or a variable, such as 4 or n.
nth term	A rule or formula to work out any term in a sequence.
Expression	A mathematical statement written using symbols, numbers or letters.
Equation	A statement showing that two expressions are equal.
Formula	Shows the relationship between two or more variables.
Substitute	In algebra it means replacing letters with numbers.
Finite	Has a set end point.
Infinite	Continues forever, and ever, and ever, and ever...
Constant Difference	The amount increases or decreases by the same amount each time
Sequence	A list of numbers or objects arrancod in a cnocific ordor

Other Topics/Units

this could appear

