Y7 Mastery: Unit 3 - Factors and multiples

| A square number always has |
| :---: | :---: |
| an odd number of factors. |\quad| Square |
| :--- |
| Number |

$$
\begin{aligned}
& \sqrt{1}=1 \text { since } 1^{2}=1 \\
& \sqrt{4}=2 \text { since } 2^{2}=4 \\
& \sqrt{9}=3 \text { since } 3^{2}=9 \\
& \sqrt{16}=4 \text { since } 4^{2}=16 \\
& \sqrt{25}=5 \text { since } 5^{2}=25 \\
& \sqrt{36}=6 \text { since } 6^{2}=36 \\
& 49=7 \text { since } 7^{2}=49 \\
& 64=8 \text { since } 8^{2}=64 \\
& \sqrt{81}=9 \text { since } 9^{2}=81 \\
& \sqrt{100}=10 \text { since } 10^{2}=100
\end{aligned}
$$

Any numbers that are factors of two or more numbers are said to be common factors of those numbers.

Factors of 12 :
1×12
2×6

$3 \times 4$$\quad \square \quad$| All the ways |
| :--- |
| of making a |
| product of 12. |

So $1,2,3,4,6$, and 12 are all the factors of 12 .

Factors of 20:

1×20
2×10
4×5

of making a

product of 20\end{array}\right.\).

So $1,2,4,5$, and 20 are all the factors of 12 .

Both lists of factors here have 1, 2 and 4 included
Therefore, 1, 2 and 4 are common factors of 12 and 20.

A prime number has exactly two factors.

2357
1317
192329313741
$43 \quad 47535961 \quad 67$
717379838997

Other Topics/Units this could appear in:

- Numbers, powers, rots, decimals and rounding
- Product of prime factors
- Multiples in context
- Factorising

Keyword/Skill	Definition/Tips
Integer	$\begin{array}{l}\text { Whole number including 0 } \\ \text { and negative numbers. No } \\ \text { fractions or decimals. }\end{array}$
Product	$\begin{array}{l}\text { Multiply } \\ \text { Prime Number }\end{array}$
$\begin{array}{l}\text { Has exactly two factors } \\ \text { Number }\end{array}$	$\begin{array}{l}\text { The result of multiplying an } \\ \text { integer by itself }\end{array}$
Cube number	$\begin{array}{l}\text { The result of multiplying an } \\ \text { integer by itself three times i.e. } \\ 2 \times 2 \times 2 \text { = 8 }\end{array}$
Multiples	$\begin{array}{l}\text { The result of multiplying a } \\ \text { number by an integer (comes } \\ \text { up in its timetable) }\end{array}$
$\begin{array}{l}\text { Common } \\ \text { multiples }\end{array}$	$\begin{array}{l}\text { A number that is a multiple of } \\ \text { two numbers }\end{array}$
LCM	$\begin{array}{l}\text { Smallest whole number that is } \\ \text { a multiple of two numbers }\end{array}$
Factors	$\begin{array}{l}\text { An integer that divides the } \\ \text { number exactly leaving no } \\ \text { remainder }\end{array}$
Factor pairs	$\begin{array}{l}\text { A set of numbers that multiply } \\ \text { to equal the number }\end{array}$
The highest common factor	
(HCF) of two or more	
numbers is the largest number	
that is a factor of all of the	
given numbers.	

Y7 Mastery: Unit 3 - Factors and multiples

Multiples
multiples of 2: $2, \overbrace{4}^{+2}, \overbrace{8}^{+2}, \overbrace{10}^{+2}, \overbrace{12}^{+2}, \ldots$
$\stackrel{+3}{+33} \stackrel{+3}{+3}+{ }^{+3}$
multiples of $3: 3,6,9,12,15, \ldots$

Other Topics/Units this could appear in:

- Numbers, powers, rots, decimals and rounding
- Product of prime factors
- Multiples in context
- Factorising

Keyword/Skill	Definition/Tips
Integer	a number which is not a fraction; a whole number.
Product	Multiply Prime Number
Has exactly two factors	
Square Number	The result of multiplying an integer by itself
Cube number	The result of multiplying an integer by itself three times i.e. 2 x 2 x 2 = 8
Multiples	The result of multiplying a number by an integer (comes up in its timetable)
Common multiples	A number that is a multiple of two numbers
LCM	Smallest whole number that is a multiple of two numbers
Factors	An integer that divides the number exactly leaving no remainder
Factor pairs	A set of numbers that multiply to equal the number
HCF	The highest common factor (HCF) of two or more numbers is the largest number that is a factor of all of the given numbers.

