Y7 Mastery: Unit 6 - Expressions, Equations and Inequalities (Part 1)

Each square represents the value of \boldsymbol{a} When we have 2 squares, we have 2 lots of \boldsymbol{a} We write this as $2 \boldsymbol{a}$ and it is called a term.
If we add another amount of a, we write this as $2 \boldsymbol{a}+\mathbf{5 a}$ This is called an expression.

When we work out the answer to this addition, the expression becomes an equation. $2 \boldsymbol{a}+5 \boldsymbol{a}=7 \boldsymbol{a}$

When terms are multiplied, they become squared.
We show this with a power/index of 2 :

$$
a \times a=a^{2}
$$

Other Topics/Units this
could appear in:

- Expressions \&
substituting into
simple formulae
- Factorising

Simplify:

$4 r-5 s+2 r s-8 s-3 r$	Highlight the like terms
	Include the operation in
$4 r-5 s+2 r s-8 s-3 r$	front!

$4 r-3 r-5 s-8 s+2 r s$	Collect the like terms together and add or
$\downarrow \quad \downarrow$	subtract them to simplify.

Final answer is $\mathbf{r} \mathbf{- 1 3 s + 2 r s}$ (we don't write the 1)

- Expand and simplify - Inequalities

Keyword/Skill	Definition/Tips
Variable	A symbol for a number we do not know yet, it is usually a letter.
Term	Either a single number or a variable, such as 4 or n or 3a or by.
Expression	A mathematical statement written using symbols, numbers or letters.
Equation	A statement showing that two expressions are equal.
Formula	Shows the relationship between two or more variables.
Simplifying Expressions	Collect 'like terms'. Be careful with negatives. x^{2} and x are not like terms.
Substitute	In algebra it means replacing letters with numbers.
Expand	When we multiply a term across a bracket, e.g. 3(a + 2) = 3a +6
Factorise	The inverse of expand. When we divide an expression by all common factors or terms, e.g. $6 g+4=2(3 g ~+~ 2) ~ a n d ~$ $a^{2}-2 a=a(a-2)$

SWB
 ACADEMY
 Y7 Mastery: Unit 6 - Expressions, Equations and Inequalities (Part 1)

We can evaluate an expression or

 formula by substituting (replacing) a letter or letters in the expression or formula with a number.
Examples:

Work out the value of these expressions when $\mathbf{n}=\mathbf{3}$.
a) $2 n$
b) $n-3$
c) $2 n-10$
d) $n^{2}+2 n$

b) 2 n means $2 \times \mathrm{n}$ so $2 \times 3=6$
c) $2 \times 3-10=6-10=-4$
b) $3-3=0$
d) n^{2} means $n \times n$ so $3 \times 3+2 \times 3=9+6=15$

Other Topics/Units this

could appear in:

- Expressions \&
- Factorising
simple formulae - Subject of
- Expand and simplify• Inequalities

Keyword/Skill	Definition/Tips
Variable	A symbol for a number we do not know yet, it is usually a letter.
Term	Either a single number or a variable, such as 4 or n or 3a or 6y.
Expression	A mathematical statement written using symbols, numbers or letters.
Equation	A statement showing that two expressions are equal.
Formula	Shows the relationship between two or more variables.
Simplifying Expressions	Collect 'like terms'. Be careful with negatives. x^{2} and x are not like terms.
Substitute	In algebra it means replacing letters with numbers.
Factorise	When we multiply a term across a bracket, e.g. 3(a + 2) $=3 a+6$ we inverse of expand. When common factors or terms, e.g. $6 g+4=2(3 g ~+~ 2) ~ a n d ~$ $a^{2}-2 a=a(a-2)$

