Control variable	Independent variable	Dependent variable
The variable that you keep the same each time you repeat an experiment.	The variable that you change within an experiment.	The variable that you measure within an experiment.

Components of a good graph in Science	
Bar graph - Plot when data is categoric. E.g. Gender, Blood group, Colour	Line graph - Plot when data is continuous E.g. Can be an infinite value.
Labelled X \& Y Axis	
Appropriate scale (numbers)	
Points plotted accurately.	
Title	

Year 8 Introduction to Science

Ensure all measurements taken are to the same number of significant figures \& decimal planes.

Measurement	SI Unit
Mass	Kg
Volume	cm
Weight	N
Force	N
Distance	m
Extension	mm
Speed	m / s

An anomaly is a number significantly higher or lower than the mean value.
Look at the data below. The anomalies have been circled.
They should now either have that test repeated or be excluded from the mean average.

Height the ball is dropped from (cm)	Height the ball bounced (cm)		Mean average height the ball bounced (cm)	
	1	2	3	23
30	25	23	22	41
60	41	40	42	65
90	67	76	63	(cm

Volume is the amount of space a 3D shape

 takes up.A cubic cm block takes up 1 cubic cm. This is written as $1 \mathrm{~cm}^{3}$.
You can work out the volume of a cuboid by multiplying height \times width \times depth.

Irregular objects we use a eureka can. We measure the volume been identifying how much water the object displaces.

Median

$7,3,4,1,7,6$
Arrange the numbers in order and pick the middle value
1, 3, 4, 6, 7, 7

Median $=(4+6) / 2=5$

Mean

$7,3,4,1,7,6$
Different between the highest and lowest number. Range $=7-1=6$

Calculating percentage increase or

 decrease.$$
\text { Percent Increase }=\frac{\text { Final Value }- \text { Initial Value }}{\text { Initial Value }} * 100 \%
$$

$\left(100^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}\right)$

