What do I need to remember from before?

Area models for multiplication (NP3)

Collecting like terms (A2)

What will I learn about in this unit?

Expanding expressions with brackets

Factorising expressions as the opposite of expanding

Expanding two brackets

Where does this lead?

Solving equations (A4)

Formulae (A5)

Inequalities (A8)

Quadratic expressions (A11)

Key words and symbols: what I need to say and write accurately

Word	Explanation			
variable	a number that can change its value, represented by a letter such as $oldsymbol{x}$ or a green tile			
constant	a number that does not change, is fixed			
operation	something that takes input numbers and turns them into output numbers, such as addition (including subtraction), multiplication (including division), exponentiation (including roots)			
expression	a collection of constants, variables and operations e.g. $4x$, $2p-5$ and x^2+3x+6 are all expressions			
term	the parts of an expression separated by $+$ or $-$. e.g. in the expression $4x - \frac{1}{2}y$, the terms are $4x$ and $\frac{1}{2}y$			
expand	write an expression containing brackets without the brackets, by multiplying e.g. $2(x-5)=2x-10$			
factorise	write an expression without brackets as a multiplication with brackets e.g. $2x - 10 = 2(x - 5)$			

What do I need to remember from before?

Equality & inverse operations (NP2, NP3, NP4)

Solving equations (A1)

Simplifying expressions (A2)

Expanding brackets (A3)

What will I learn about in this unit?

Mathematical equality

Balancing an equation

Solving all types of linear equations

Where does this lead?

Rearranging formulae (A5)

Equations of a line (A6)

Quadratic equations (A12)

Using equations to solve geometry and probability problems (GM2 – GM11, SP7)

Key words and symbols: what I need to say and write accurately

Word	Explanation		
unknown	a number that we do not know, represented by a letter		
expression	a collection of constants, variables and operations e.g. $4x$, $2p-5$ and x^2+3x+6 are all expressions		
equation	when we write two expressions equal to one another e.g. $2+3=5$, $2x+3=5$ and $2x+3=5x-6$ are all equations		
term	the parts of an expression separated by $+$ or $-$ e.g. in the expression $4x - \frac{1}{2}y$, the terms are $4x$ and $\frac{1}{2}y$		
solve	when we solve an equation, we find out what the value of the unknown is		

Fingertip facts: what I need to learn by heart

An equation must always be balanced: whatever we do to one side we must also do to the other.

What do I need to remember from before?

Arithmetic strategies (NP1, 2, 3, 4)

Order of operations (NP5)

Negative numbers (NP6)

Algebraic expressions (A1, 2, 3)

Solving equations (A4)

What will I learn about in this unit?

Substituting numbers into expressions and formulae

Writing and using formulae

Rearranging formulae to change the subject

Where does this lead?

All further algebra units

Using formulae in geometry (GM3 onwards)

Advanced proportion (NP13)

Advanced probability and statistics (A Level)

Key words and symbols: what I need to say and write accurately

Word	Explanation		
variable	A letter that represents many numbers (a letter whose value can vary) e.g. x , y , θ		
constant	A fixed number e.g. 2, -1.8, π		
expression	A collection of any variables, constants and operations e.g. $2x + 5$, $a - b$, $3p$, $\frac{n+5}{7}$, $3 \times 4 - 2^3$		
substitute	Replace a variable with a constant e.g. When $x = 3$, the value of $2x - 1$ is $2 \times 3 - 1$, or 5.		
evaluate	Work out the value of a calculation. e.g. "Evaluate 2 + 3" means "Work out the value of 2 + 3."		
formula (pl. formulae or formulas)			
subject	The subject of a formula is the variable that is 'on its own' on one side of the equation. e.g. In the formula $A = lw$, the subject is A .		
rearrange	Rearranging a formula means changing its subject. e.g. $A = lw$ can be rearranged to make l the subject: $l = \frac{A}{w}$		

What do I need to remember from before?

Number lines (NP1, 2, 3, and 6)

Substitution (A1 and A5)

Writing expressions, equations and formulae (A2, A3, A4 and A5)

What will I learn about in this unit?

Plotting and using coordinates

The links between graphical and algebraic representations of equations

Gradient as a measure of steepness

Where does this lead?

Sequences (A7)

Inequalities on graphs (A8, A10)

Advanced equations of lines (A10)

Quadratic graphs (A12)

Advanced graphs (A14, A15)

Key words and symbols: what I need to say and write accurately

Word	Explanation			
midpoint	the point exactly in the middle of two others			
gradient	the steepness of a line			
y-intercept	where a graph crosses the y -axis			
x-intercept	where a graph crosses the x -axis			
parallel	describing two lines that have the same gradient so will never intersect			
to intersect	to cross – we say two lines intersect			
simultaneously	at the same time			
parabola	the name of the shape of a quadratic graph			
vertex	the turning point of a quadratic graph			

Fingertip facts: what I need to learn by heart

The equation of any straight line can be written in the form y = mx + c.

gives the gradient y = mx + c

The coefficient of x

The constant gives the y intercept

A6 2

What do I need to remember from before?

Arithmetic (NP2, NP3, NP4)

Solving linear equations (A4)

Formulae, including substitution

Linear graphs (A6)

What will I learn about in this unit?

Linear sequences

nth term formulae for linear sequences

Recognising non-linear sequences

Where does this lead?

Advanced linear graphs (A10)

Advanced sequences – quadratic and geometric (A13)

Recurrence relations (A13)

Exponential functions (A15)

Sequences on A-Level maths

Key words and symbols: what I need to say and write accurately

key words and symbo	ols: what I need to say and write accurately		
Word	Explanation		
term	A number in a sequence. Terms have position 1, 2, 3, 4, and so on, and these positions are labelled with the variable n . e.g. in the sequence 5, 7, 9, 11, the 1 st term (where $n = 1$) is 5 and the 4 th term (where $n = 4$) is 11.		
term-to-term rule	We can define a sequence with a term-to-term rule, which tells us where to start and how to get from one term to the next. e.g. in the sequence 5, 7, 9, 11, the term-to-term rule would be 'start at 5 and add 2 every time'		
increasing sequence	A sequence where each term is greater than the one before. e.g. 5, 7, 9, 11,		
decreasing sequence	A sequence where each term is less than the one before. e.g. 11, 9, 7, 5,		
nth term formula	A formula that calculates the value of each term, using its position, n . For this reason it is sometimes called the position-to-term formula. e.g. For the sequence 5, 7, 9, 11, the n th term formula is $2n + 3$		
coefficient	A number/letter that multiplies another in an expression. e.g. In the expression $2n + 3$, the coefficient of n is 2 and the coefficient of 2 is n .		
linear sequence	A sequence where the difference between terms is constant (doesn't change). e.g. 5, 7, 9, 11, (the difference is 2) or 10, 7, 4, 1, (the difference is -3).		
quadratic sequence	A sequence where the differences between terms form a linear sequence. e.g. 1, 4, 9, 16, 25, (the differences are 3, 5, 7, 9,, which is itself a linear sequence).		
geometric sequence	A sequence where there is a constant multiplier between terms. e.g. 1, 2, 4, 8, 16, (each term is multiplied by 2 to get the next)		
Fibonacci-style sequence	A sequence where each term is the sum of the previous two. e.g. 1, 4, 5, 9, 14, 23,		

Fingertip facts: what I need to learn by heart

The sequence of square numbers: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, ...

The sequence of cube numbers: 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, ...

The triangular (or triangle) numbers: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...

The Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

A7 2

What do I need to remember from before?

Inequality symbols, < and > (KS2)

Solving linear equations (A4)

Plotting vertical and horizontal graphs (A6)

What will I learn about in this unit?

Reading, writing and interpreting inequalities

Solving linear inequalities, including in contexts

Plotting simple inequalities in 2D

Where does this lead?

Inequalities in 2D (A??)

Quadratic inequalities (A??)

Non-linear inequalities (A Level Maths)

Linear programming (A Level Further Maths)

Key words and symbols: what I need to say and write accurately

Word or symbol	Explanation	Phrases meaning 'less than' $x < 7$	$\frac{\text{Phrases meaning 'greater than'}}{x > 7}$
>	is greater than		<u> </u>
<	is less than	7	7
≥	is greater than or equal to	any number which is	any number which is
≤	is less than or equal to	less than 7	greater than 7
equation	a statement that two quantities have equal value, e.g. $5 + 2 = 10 - 3$	up to (but not including) 7 up to (and excluding) 7	exceeding 7
Inequality	a statement that two quantities do not have equal value, e.g. 5 + 2 < 12 + 1	Phrases meaning 'less than or equal to' $x \le 7$	Phrases meaning 'greater than or equal to' $x \ge 7$
comparative inequality	an inequality that compares two values, e.g. $4 > 1$ or $x > 8$ or $1 \le x$	any number which is	any number which is
restrictive inequality	a 'double' inequality that puts an upper and lower limit on a number, e.g. $5 \le x < 10$	less than or equal to 7 at most 7 no greater/more than 7 up to (and including) 7	greater than or equal to 7 at least 7 no less than 7

Fingertip facts: what I need to learn by heart

If we multiply or divide an inequality by a negative number, the direction of the sign reverses due to the rotating effect of multiplication by negatives.

If
$$-x > 2$$
,
then $x < -2$
 $x = -6$
 $x = -4$
 $x = -2$
 $x = -2$
 $x = -2$
 $x = -4$
 $x = -2$
 $x = -4$
 $x = -2$
 $x = -4$
 $x = -2$
 $x = -6$
 $x = -4$
 $x = -2$
 $x = -6$
 $x = -4$
 $x = -2$
 $x = -6$
 $x = -6$