YEAR 11 - NON-LINEAR GRAPHS

y the end of this unit you should be able to:	MathsWatch clip	Video tutorial
 Plot & read from quadratic graphs 	98	Corbett
 Plot & read from cubic graphs 	161	MathsGenie
 Plot & read from reciprocal graphs 	161	MathsGenie
Recognise graph shapes		
 Identify & interpret roots & intercepts of quadratics 	160	
 Understand & use exponential graphs (H) 	194	Corbett
 Find and use the equation of a circle centre (0,0) (H) 	197	Corbett
• Find the equation of the tangent to any curve (H)	208	Corbett

Keywords

Quadratic: an expression in which the highest power is 2, such as $x^2 - 5x + 3$

Cubic: an expression in which the highest power is 3, such as $8 + x^3$

Estimate: read approximate values from a graph

Osymptote: a line that a curve approaches, but never quite touches

Gradient: the steepness (or slope) of a line. O negative gradient means the line slopes downhill

Substitute: put numbers in place of letters to find the value of an expression **Reciprocal**: a graph with an equation of the form $y=\frac{k}{x}$ where k is a number

Roots: the solutions when an equation equals zero (often the x-intercepts of a graph) **Exponential**: a graph with an equation of the form $y = k^x$ where k is a number

Tangent: a straight line touching a curve which can be used to estimate the gradient of the curve at that point

