My mathematical journey

What do I need to remember from before?

Adding and subtracting expressions (A2)

Multiplying and dividing expressions (A3)

Factorising expressions (A3)

Simplifying fractions (NP7)

Rearranging formulae (A5)

What will I learn about in this unit?

Rules of indices: multiplication, division and exponentiation

Multiplying multiple brackets

Factorising quadratics

Simplifying algebraic fractions

Rearranging more complex formulae

Where does this lead?

Quadratic graphs and equations (A12, A14)

Working with all types of nonlinear functions (A15)

Operating with algebraic fractions (A17)

Algebraic proof by deduction (A17)

A-Level mathematics

Key words and symbols: what I need to say and write accurately

Word	Explanation		
polynomial	an expression containing only numbers and non-negative powers of x .		
	e.g. $12x + 7$, $12 + 56x - x^2$, $12 + 56x - x^2 + 11x^3$.		
binomial	an expression with two terms. e.g. $x - 1$, $5x + 6$, $12x^2 + 7x$.		
	"is identical to". Used to show an identity – when two expressions are identical for every value of		
=	x, perhaps just written in a different way.		
	e.g. $x^2 + 5x + 6 \equiv (x+3)(x+2)$ or $5x - 3x \equiv 2x$		

Types of polynomial	General expanded form	Example (expanded and factorised)
Constant, x^0 , no brackets	а	5
Linear, x^1 , up to one bracket	ax + b	$4x + 10 \equiv 2(2x + 5)$
Quadratic, x^2 , up to two brackets	$ax^2 + bx + c$	$2x^2 + 7x + 3 \equiv (2x + 1)(x + 3)$
Cubic, x^3 , up to three brackets	$ax^3 + bx^2 + cx + d$	$x^3 + 3x^2 - 6x - 8 \equiv (x+1)(x-2)(x+4)$

Fingertip facts: what I need to learn by heart

The index laws

- 1. When we multiply powers with the same base, we can add their exponents. $x^7 \cdot x^3 = x^{10}$
- 2. When we <u>divide</u> powers with the <u>same base</u>, we can <u>subtract their exponents</u>. $\frac{x^7}{x^3} = x^4$
- 3. When we find a power of a power, we can multiply the exponents together. $(x^2)^3 = x^6$

Factorising a quadratic, $ax^2 + bx + c$

Look for two numbers whose sum is b and whose product is ac.

Difference of two squares e.g. $x^2 - 9 \equiv (x - 3)(x + 3)$ or $16x^2 - 49 \equiv (4x - 7)(4x + 7)$