My mathematical journey

What do I need to remember from before?

Powers and roots (NP4)

Substitution and rearranging a formulae (A5)

Angles in triangles (GM2)

Similarity (GM4)

What will I learn about in this unit?

Pythagoras' Theorem

Trigonometry in right-angled triangles

Exact values in surd form

Where does this lead?

Advanced length and area (GM9)

Trigonometric graphs (A13)

A Level mathematics, physics, engineering and more

Key words and symbols: what I need to say and write accurately

The trigonometric functions have angles as their input. Their inverse functions are written using -1.

The **hypotenuse** is the longest side in a right-angled triangle, opposite the right angle.

The other two sides are called the adjacent and opposite. They change depending on the angle you look at.

Fingertip facts: what I need to learn by heart

Pythagoras' Theorem

For any right-angled triangle,

$$a^2 + b^2 = c^2$$

Trigonometry

Three equations:

$$sin(\theta) = \frac{opposite}{hypotenuse}$$

$$cos(\theta) = \frac{adjacent}{hypotenuse}$$

$$tan(\theta) = \frac{opposite}{adjacen}$$

A mnemonic to help you remember the equations:

The exact values of sine, cosine and tangent for key angles:

or sine, cosine and tangent for key angles.				
	Angle, $ heta$	30°	45°	60°
	$\sin \theta$	$\frac{\sqrt{1}}{2} = \frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
	$\cos \theta$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{1}}{2} = \frac{1}{2}$
	$\tan \theta$	$\frac{1}{\sqrt{3}}$	1	$\frac{\sqrt{3}}{1} = \sqrt{3}$

GM5